
Agenda

Intro to Assembly: From programs to machine code

Generating and compiling assembly

Assembly concepts

Instructions (Operations, Control Flow, Moving data)

Registers

von Neuman architecture: stored program model of computation

A program written in a high-level language is compiled (e.g. translated) into a
binary (0’s and 1’s) executable:

From programs to machine code

// example C program

main() {

 int x;

 x = 6 + 7;

 printf(“x %d”, x);

}

C program: binary executable program:

gcc
compiler

2

Operating System (OS)

Computer Hardware
(HW)

Slide by Tia Newhall, CS31, Swarthmore

01010110101
01010101010
10101010101
01010100

How is machine code run?

When we say computer architecture in this class, we are referring to the
design of the computer’s processor, not the entire hardware system of the
computer

Central processing unit (CPU) executes programs

Random access memory (RAM) stores program instructions + data

Instruction set architecture (ISA) refers to the commands the processor can
execute along with how command operands are stored
 Assembly language is based on an ISA

Assembly

Assembly language is a readable form of machine code

 -> directly represents the commands that the CPU executes

A compiler translates human-readable code into machine code

The Instruction Set Architecture (ISA) depends on your OS and
hardware. We will use x86_64

To see what your machine supports: $ uname -p

114e: 48 89 e5 mov %rsp,%rbp
 1151: 48 83 ec 10 sub $0x10,%rsp
 1155: c7 45 fc 0d 00 00 00 movl $0xd,-0x4(%rbp)

Machine Language Assembly LanguageInstruction Address

Von Neuman Architecture

Sec 5.1 (history)
Sec 5.2

Almost all computer architectures in use today are based on the Von Neuman architecture.

When we run machine code, we run it on this type of architecture

Idea: Stored program model. Hardware is like paper and software is like writing.

Von Neuman Architecture

Processing unit contains
• arithmetic/logic unit
• registers

A register is a small, fast unit of memory that stores program instructions + data

Von Neuman Architecture

The control unit drives the execution of the program. It contains the

• program counter (PC), which keeps the address of the next instruction to execute
• instruction register (IR), which contains the currently executing instruction

Von Neuman Architecture

The Processing Unit and Control Unit together make up the Central Processing Unit (CPU)

Von Neuman Architecture

The Memory Unit stores both program data and instructions. For now, this can be thought of as the same
as RAM. The memory unit allows the CPU to access data in memory very quickly.

Von Neuman Architecture

The Input Units represent devices such as the keyboard, camera, and mouse. The Output Units represent
devices that display the results of computations, such as your monitor or speakers. Some devices are both
input and output devices. Can you think of one?

Von Neuman Architecture

A bus is a communication channel between components (wires). Typically, there are separate buses for
sending data, accessing memory, and commands between units.

Executing a program

1. The control unit fetches the next instruction

2. The control unit decodes the instruction in the IR

3. The processing unit executes the instruction

4. The control unit stores the result to memory

mov %rsp,%rbp
sub $0x10,%rsp
movl $0xd,-0x4(%rbp)
mov -0x4(%rbp),%eax
mov %eax,%esi

Example: Adding two numbers add %eax, ,-0x4(%rbp)

Example: Adding two numbers

Example: From programs to machine code

00000000 7F 45 4C 46 02 01 01 00 00 00 00 00 00 00 00 00 03 00 3E 00 .ELF..............>.

00000014 01 00 00 00 60 10 00 00 00 00 00 00 40 00 00 00 00 00 00 00 `.......@.......

00000028 78 39 00 00 00 00 00 00 00 00 00 00 40 00 38 00 0D 00 40 00 x9..........@.8...@.

#include <stdio.h>

int main() {
 int x;
 x = 6 + 7;
 printf("x %d\n", x);
 return 0;
}

The compiler translates a high-level language to machine
code through a series of steps: pre-compiling, compiling,
and linking

0000000000001149 <main>:

 1149: f3 0f 1e fa endbr64

 114d: 55 push %rbp

 114e: 48 89 e5 mov %rsp,%rbp

 1151: 48 83 ec 10 sub $0x10,%rsp

 1155: c7 45 fc 0d 00 00 00 movl $0xd,-0x4(%rbp)

 115c: 8b 45 fc mov -0x4(%rbp),%eax

 115f: 89 c6 mov %eax,%esi

 1161: 48 8d 3d 9c 0e 00 00 lea 0xe9c(%rip),%rdi # 2004 <_IO_stdin_used+0x4>

 1168: b8 00 00 00 00 mov $0x0,%eax

 116d: e8 de fe ff ff callq 1050 <printf@plt>

 1172: b8 00 00 00 00 mov $0x0,%eax

 1177: c9 leaveq

 1178: c3 retq

 1179: 0f 1f 80 00 00 00 00 nopl 0x0(%rax)

00000000 7F 45 4C 46 02 01 01 00 00 00 00 00 00 00 00 00 03 00 3E 00 .ELF..............>.

00000014 01 00 00 00 60 10 00 00 00 00 00 00 40 00 00 00 00 00 00 00 `.......@.......

00000028 78 39 00 00 00 00 00 00 00 00 00 00 40 00 38 00 0D 00 40 00 x9..........@.8...@.

The compiler can show you the results of
each step. For example, we can look at
the assembly code.

Example: simple.c

// simple.c
#include <stdio.h>

int main() {
 int x;
 x = 6 + 7;
 printf("x %d\n", x);
 return 0;
}

To produce human readable machine code using objdump

 $ objdump –d <exe> > output.txt

To produce programmable assembly code use gcc

 $ gcc simple.c –S –o simple.S

To compile assembly code

 $ gcc simple.S

Example: simple.c (objdump output)

0000000000001149 <main>:
 1149: f3 0f 1e fa endbr64
 114d: 55 push %rbp
 114e: 48 89 e5 mov %rsp,%rbp
 1151: 48 83 ec 10 sub $0x10,%rsp
 1155: c7 45 fc 0f 00 00 00 movl $0xf,-0x4(%rbp)
 115c: 8b 45 fc mov -0x4(%rbp),%eax
 115f: 89 c6 mov %eax,%esi
 1161: 48 8d 3d 9c 0e 00 00 lea 0xe9c(%rip),%rdi # 2004 <_IO_stdin_used+0x4>
 1168: b8 00 00 00 00 mov $0x0,%eax
 116d: e8 de fe ff ff callq 1050 <printf@plt>
 1172: b8 00 00 00 00 mov $0x0,%eax
 1177: c9 leaveq
 1178: c3 retq
 1179: 0f 1f 80 00 00 00 00 nopl 0x0(%rax)

Example: simple.S
main:
.LFB0:
 .cfi_startproc
 endbr64
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 subq $16, %rsp
 movl $13, -4(%rbp)
 movl -4(%rbp), %eax
 movl %eax, %esi
 leaq .LC0(%rip), %rdi
 movl $0, %eax
 call printf@PLT
 movl $0, %eax
 leave
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc

Find the instruction that corresponds
to the line

 x = 6 + 7

Why learn assembly?

To understand what is happening under the hood

Some computing systems are too hardware constrained for compilers

Vulnerability analysis

Critical code in system-level software

Understanding program behavior
What is the output of this program?

int adder() {
 int a;
 return a + 2;
}
int assign() {
 int y = 40;
 return y;
}
int main() {
 int x;
 assign();
 x = adder();
 printf("x is: %d\n", x);
 return 0;
}

What types of commands does assembly
support?
Arithmetic and logical operations

Control flow

Moving data between CPU and memory

Pushing/popping the function stack

Assembly Basics

#include <stdio.h>

int adder2(int a) {
 return a + 2;
}

int main(){
 int x = 40;
 x = adder2(x);
 printf("x is: %d\n", x);
 return 0;
}

0000000000001149 <adder2>:
 1149: f3 0f 1e fa endbr64
 114d: 55 push %rbp
 114e: 48 89 e5 mov %rsp,%rbp
 1151: 89 7d fc mov %edi,-0x4(%rbp)
 1154: 8b 45 fc mov -0x4(%rbp),%eax
 1157: 83 c0 02 add $0x2,%eax
 115a: 5d pop %rbp
 115b: c3 retq

Registers

Recall: A register holds data on the CPU

All registers have a name (start with %)

%rax – holds return value

%rdi, %rsi, %rdx, %rcx, %r8, %r9 – typically hold function parameters

%rsp – stack pointer

%rbp – base pointer, aka frame pointer

%rip – instruction pointer, aka program counter (read-only)

Registers

64-bit Register 32-bit Register Lower 16 Bits Lower 8 Bits

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rdi %edi %di %dil

%rsi %esi %si %sil

%rsp %esp %sp %spl

%rbp %ebp %bp %bpl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b

%r12 %r12d %r12w %r12b

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b

x86_64 registers and mechanisms for accessing lower bytes (from Dive into Systems)

Registers

No data types in assembly!

But compiler will often choose registers based on data types

• ints will be stored in %eax or %esi because they are 32 bits

• longs will be stored in %rax or %rsi because they are 64 bits

Registers: Example

0000000000001149 <adder2>:
 1149: f3 0f 1e fa endbr64
 114d: 55 push %rbp
 114e: 48 89 e5 mov %rsp,%rbp
 1151: 89 7d fc mov %edi,-0x4(%rbp)
 1154: 8b 45 fc mov -0x4(%rbp),%eax
 1157: 83 c0 02 add $0x2,%eax
 115a: 5d pop %rbp
 115b: c3 retq

Instruction structure

Instructions contain an op code and operands.

Ex. mov -0x4(%rbp), %eax

Ex. add $0x2,%eax

Types of operands

Constant (literal) values, for example, $0x2

Register reference to an individual register, for example, %eax

Memory forms refer to address lookups in RAM, for example,

 -0x4(%rbp)

Memory Forms

<Offset>(Register1, Register2, <Scale>)

Examples:

• -0x4(%rbp)

• -0x4(,%rax,4)

• -0x4(%rbp, %rax, 8)

• 0x8(%rbp, %rax)

Example: operands
Address Value

0x804 0xCA

0x808 0xFD

0x80c 0x12

0x810 0x1E

Memory

Register Value

%rax 0x804

%rbx 0x10

%rcx 0x4

%rdx 0x1

Registers

Operand Form Translation Value

%rcx

(%rax)

$0x808

0x808

0x8(%rax)

(%rax, %rcx)

0x4(%rax, %rcx)

0x800(,%rdx,4)

	Slide 1: Agenda
	Slide 2: From programs to machine code
	Slide 3: How is machine code run?
	Slide 4: Assembly
	Slide 5: Von Neuman Architecture
	Slide 6: Von Neuman Architecture
	Slide 7: Von Neuman Architecture
	Slide 8: Von Neuman Architecture
	Slide 9: Von Neuman Architecture
	Slide 10: Von Neuman Architecture
	Slide 11: Von Neuman Architecture
	Slide 12: Executing a program
	Slide 13: Example: Adding two numbers
	Slide 14: Example: Adding two numbers
	Slide 15: Example: From programs to machine code
	Slide 16
	Slide 17: Example: simple.c
	Slide 18: Example: simple.c (objdump output)
	Slide 19: Example: simple.S
	Slide 20: Why learn assembly?
	Slide 21: Understanding program behavior
	Slide 22: What types of commands does assembly support?
	Slide 23: Assembly Basics
	Slide 24: Registers
	Slide 25: Registers
	Slide 26
	Slide 27: Registers
	Slide 28: Registers: Example
	Slide 29: Instruction structure
	Slide 30: Types of operands
	Slide 31: Memory Forms
	Slide 32: Example: operands

