
Agenda

Assembly instructions
Arithmetic

Example: Calling a function

Lea

Demo: The guessing game
Dissassembly

Buffer exploits

Assembly – Common instructions

Example – Common instructions

mov -0x4(%rbp),%eax

add $0x2,%eax

Assembly: Arithmetic

Recall: Program Memory

Recall: The Execution Stack

#include <stdio.h>

int adder2(int a) {
 return a + 2;
}

int main(){
 int x = 40;
 x = adder2(x);
 printf("x is: %d\n", x);
 return 0;
}

Assembly: Pop Quiz

What is %rsp?

What is %rbp?

Assembly: Functions

All currently executing functions are on the stack

• Only the topmost is running

• All other functions are waiting

Local variable are references with respect to the base pointer (%rbp)

When the stack is popped, nothing is cleaned!

• E.g. old values are still there

Assembly: Functions

Assembly: Functions

Example – adder2

int adder2(int a) {
 return a + 2;
}

0000000000400526 <adder2>:
 400526: 55 push %rbp
 400527: 48 89 e5 mov %rsp,%rbp
 40052a: 89 7d fc mov %edi,-0x4(%rbp)
 40052d: 8b 45 fc mov -0x4(%rbp),%eax
 400530: 83 c0 02 add $0x2,%eax
 400533: 5d pop %rbp
 400534: c3 retq

Example – adder2

Registers

%eax Junk

%edi 0x28

%rsp 0xd28

%rbp 0xd40

%rip 0x526

Address Value

Stack

Example – adder2

Registers

%eax

%edi

%rsp

%rbp

%rip

Address Value

Stack

Example – adder2

Registers

%eax

%edi

%rsp

%rbp

%rip

Registers

%eax

%edi

%rsp

%rbp

%rip

Address Value

Stack

Example – adder2

Registers

%eax

%edi

%rsp

%rbp

%rip

Registers

%eax

%edi

%rsp

%rbp

%rip

Registers

%eax

%edi

%rsp

%rbp

%rip

Address Value

Stack

Example – adder2

Registers

%eax

%edi

%rsp

%rbp

%rip

Registers

%eax

%edi

%rsp

%rbp

%rip

Registers

%eax

%edi

%rsp

%rbp

%rip

Registers

%eax

%edi

%rsp

%rbp

%rip

Address Value

Stack

Example – adder2

Registers

%eax

%edi

%rsp

%rbp

%rip

Registers

%eax

%edi

%rsp

%rbp

%rip

Registers

%eax

%edi

%rsp

%rbp

%rip

Registers

%eax

%edi

%rsp

%rbp

%rip

Registers

%eax

%edi

%rsp

%rbp

%rip

Address Value

Stack

Example – adder2

Registers

%eax

%edi

%rsp

%rbp

%rip

Address Value

Stack

Assembly: lea

Load effective address (lea) is a fast instruction for computing memory
addresses

Unlike mov, lea does not perform a memory lookup

Example: lea

Instruction Translation Value

lea 8(%rax), %rax

lea (%rax, %rdx), %rax

lea (,%rax,4), %rax

lea -0x8(%rcx), %rax

lea -0x4(%rcx, %rdx, 2), %rax

Registers

%rax 0x5

%rdx 0x4

%rcx 0x808

Real World Exploits: Buffer Overflow

Buffer is another term for array.

Buffer overflow occurs when we try to access memory outside of the
bounds of an array.

Usually this results in a segmentation fault; however, buffer overflows
can be exploited by hackers to make a program execute in a manner
different from what was intended. This is called a buffer overflow
exploit.

Example: Guessing Game

Suppose an attacker has
access to the executable as
well as the source code
here.

How can they execute the
code in endgame without
knowing the secret code
and secret value?

void endGame(void){
 printf("You win!\n");
 exit(0);
}

int main(){
 int guess, secret, len, x=3;
 char buf[12];
 printf("Enter secret number:\n");
 scanf("%s", buf);
 guess = atoi(buf);
 secret=getSecretCode();
 if (guess == secret)
 printf("You got it right!\n");
 else{
 printf("You are so wrong!\n");
 return 1;
 }
 printf("Enter the secret string to win:\n");
 scanf("%s", buf);
 guess = calculateValue(buf, strlen(buf));
 if (guess != secret){
 printf("You lose!\n");
 return 2;
 }
 endGame();
 return 0;
}

Reverse Engineering

gdb ./secret

disass main

Dump of assembler code for function main:

 0x00000000004006f2 <+0>: push %rbp

 0x00000000004006f3 <+1>: mov %rsp,%rbp

 0x00000000004006f6 <+4>: sub $0x20,%rsp

 … etc

Using tools such as GDB and hexedit, one can
reverse engineer an executable to infer the original
code.

From this, you could find the secret number and
secret message if they were hard-coded.

Exploiting buffer vulnerabilities

Where are the potential lines
where we could overrun a buffer?

void endGame(void){
 printf("You win!\n");
 exit(0);
}

int main(){
 int guess, secret, len, x=3;
 char buf[12];
 printf("Enter secret number:\n");
 scanf("%s", buf);
 guess = atoi(buf);
 secret=getSecretCode();
 if (guess == secret)
 printf("You got it right!\n");
 else{
 printf("You are so wrong!\n");
 return 1;
 }
 printf("Enter the secret string to win:\n");
 scanf("%s", buf);
 guess = calculateValue(buf, strlen(buf));
 if (guess != secret){
 printf("You lose!\n");
 return 2;
 }
 endGame();
 return 0;
}

Exploiting buffer vulnerabilities
Idea: Overrun the buffer given to scanf
to overwrite the return address of
main to go endgame.

See the book to try this yourself

Protecting against buffer overflow

Stack randomization randomizes the location of the call stack so
hackers can rely on the same memory addresses being re-used when
the program is run.

Stack corruption detection uses flags to detect mis-use of the stack

Limited executable regions restricts executable code to only be in
certain regions of memory

All methods are still vulnerable to hackers

Stack randomization can be circumvented using a NOP sled which
reruns the program until an unlucky address location results in
execution landing in the hacker’s code.

Stack corruption detection can also be exploited by hackers if they
know how and where the flags are implemented.

Limited executable regions can be exploited by hackers who invoke
functions directly from the executable regions

Best Defense: Good programming

Use length specifiers whenever possible

	Slide 1: Agenda
	Slide 2: Assembly – Common instructions
	Slide 3: Example – Common instructions
	Slide 4: Assembly: Arithmetic
	Slide 5: Recall: Program Memory
	Slide 6: Recall: The Execution Stack
	Slide 7: Assembly: Pop Quiz
	Slide 8: Assembly: Functions
	Slide 9: Assembly: Functions
	Slide 10: Assembly: Functions
	Slide 11: Example – adder2
	Slide 12: Example – adder2
	Slide 13: Example – adder2
	Slide 14: Example – adder2
	Slide 15: Example – adder2
	Slide 16: Example – adder2
	Slide 17: Example – adder2
	Slide 18: Example – adder2
	Slide 19: Assembly: lea
	Slide 20: Example: lea
	Slide 21: Real World Exploits: Buffer Overflow
	Slide 22: Example: Guessing Game
	Slide 23: Reverse Engineering
	Slide 24: Exploiting buffer vulnerabilities
	Slide 25: Exploiting buffer vulnerabilities
	Slide 26: Protecting against buffer overflow
	Slide 27: All methods are still vulnerable to hackers
	Slide 28: Best Defense: Good programming

